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The probIem of neutral atom transport in plasmas is formulated in terms of an integral 
equation for the charge exchange collision density. This formulation is used as The basis 
for a numerical code, SPUDNUT, which is exceptionally fast and compact. Comparative 
calculations with other neutral particle transport codes are presented. 

1. INTRODUCTION 

It is well known that neutral hydrogcnic atoms play an important role in the 
evolution of tokamak discharges. Neutral atoms affect both the particle and energy 
balance of the plasma and, by wall bombardment, can erode the chamber wall as well 
as provide a mechanism for the generation of impurities which enter the plasma. 
Consequently, codes which calculate the transport of neutral atoms are generally 
included as routines in tokamak simulation codes [l, 21. Furthermore, the energetic 
neutral particles emerging from the plasma are often used as a diagnostic of the 
plasma ion temperature and the quantity and energy of these neutrals are of interest 
to surface physicists. 

Greenspan [3] pointed out that neutral particle transport is conceptually the same 
as photon or neutron transport. Consequently, neutronics codes, such as ANISN, can 
be easily adapted to neutral atom transport. Several calculations of this type have 
been reported [3-71. Unfortunately such codes are bulky and sIow since they are 
designed to treat complicated neutron interactions; the neutral atom processes in a 
plasma are rather simple in comparison. This simplicity has led to the development of 
special purpose neutral transport routines which are better suited for inclusion in 
tokamak simulation codes. Some of these special purpose routines have been discussed 
by Hogan [2] in his review. The role then, of codes based on neutron transport 
methods, has been to provide an accuracy standard for the special-purpose routines 

F, 71. 
We present here a special-purpose neutral transport routine which is exceptionally 

compact and fast. This routine, which is designed for inclusion in tokamak simulation 
codes, is based on an integral equation for neutral particle transport. The geometry is 
that of a finite thickness plasma slab with a source of neutral atoms at the plasma 
edge. For large tokamaks in which the neutral atom mean free path is much less than 
the minor radius, this assumption of slab geometry is sufficient for wall-originated 
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neutrals. For neutrals originating near the center of the device (e.g., from beam 
injection) or for “optically thin” plasmas cylindrical effects are more important. In 
Section 2, we formulate the integral equation on which the neutral transport routine 
is based. This equation is then transformed in Section 3 into a quite-dirne~s~o~a~ 
matrix equation in a manner which conserves particles and energy. The dimensio~a~~t~ 
of the matrix equation is the number of mesh points over which neutral particle 
transport is to be calculated. In Section 4 we present some results and a corn 
with the ANISN calculation of Gill&an et al. [7] and with results using 
neutral atom transport routine (FASLAB), developed at Oak Ridge 

2. THE TRANSPORT INTEGRAL EQUATION 

e consider a slab of width d filled with plasma as shown in Fig. 1. The plasma 
ensity and temperatures are functions of x, the coordinate normal to the s 

We divide the neutral particles into two classes: those emitted from the wall 
and those born inside the plasma by charge exchange. The latter are assu 
born isotropically and with a single energy E, defined by the ion temperature Ti at the 
place of birth. 

X 

PLASMA CORE 

PLASMA 
EDGE 

FIG. 1. The slab geometry for the neutral particle transport code. 
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The isotropic assumption has been shown to be adequate in ANISN calculations 171; 
the monoenergetic assumption can only be justified a posteriori, i.e., by comparison to 
multigroup calculations. This is done in Section 4. The neutral particles emitted by 
the wall are divided into discrete energy groups and have a specified angular distribu- 
tion with respect to the x-axis. The boundary condition at x = d is perfect absorption. 

We begin with the wall-originated particles. Let $0) be the number emitted per unit 
wall area per unit time per unit solid angle in the direction 6. We consider first a single- 
energy group with energy E,, = imu,, 2 The number of particles traversing a differen- . 
tial area dA (normal to the x-axis) per unit time due to source points in an annular 
ring of width dr and radius r, as shown in Fig. 2, is 

where dL? = dA cos O/9. The exponential factor is due to absorption along the path 
length s, and 

/4(X, -83) = G(X) ((JV>e + %(X)[(uV>i + (~V>cx]. (3) 

The reaction rates for electron impact ionization, <a~)~, ion impact ionization, 
(av)r , and charge exchange, <ov)~~ , depend on x through the electron temperature, 
T&c); and the ion temperature, Ti(x); and on the neutral energy I& . n,(x) and ni(x) 
are, of course, the electron and ion densities, respectively. Since x = s cos 8, 

s ’ k&‘P -h) ds’ = m po(x’, Eo) dx’ l BOW 
0 vo cos 0 s 0 z-‘O =COSel 

(4) 

/IO(x) being the optical depth on axis. 
To obtain the neutral particle flux I’ traversing dA, we integrate (2) over r and divide 

by dA: 

AREA dA 

PLANE X=0 

FIG. 2. Coordinates for the integration to obtain the flux of particles through the area dA. 
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It is more convenient to integrate over 24, rather than Y, where u = 1/6os 8. The 
then becomes 

We consider now two cases. First, let the source function ~(0) be isotropic (q(9) = 
$I. Then 

where 

is the exponential integral [S]. Noting that 237~ = I’, ) the flux at x = 0, we can write 
r(x) as 

w = rcv%(P(x)). 973 

For the second case we consider a cos 0 source (q(e) = ql cos 0). Then we get 

as the expression equivalent to (7) for this case. (Recall that E,(O) = Q, I&(O) = I.> 
For the wall-originated neutral particles, we use Eq. (B), corresponding to a cos 0 

angular distribution of the source. This is equivalent to assuming that these particles 
have an isotropic distribution function at x = 0. To see this, consider the ~o~tzrna~~ 
equation with a volumetric source and no absorption; 

where U, = v cos 8. Let the source be localized to a plane at x = x0 ; 

S(x, v, 0) = S(v) T?(B) 6(x - x0)* 

Integrating the Boltzmann equation in x gives 

v cos Bf = S(v) #I), 

If j’ is to be independent of 6, $0) must be proportional to cos 5. The first case, 
isotropic source, will be used for the internally born particles. 

The absorption rate per unit volume in the plasma is 
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and the fraction of the absorption rate due to charge exchange is ni(au)&p(x, I?,,). 
Each charge exchange event produces a first generation neutral particle in the plasma. 
Thus, 

is the source rate for first generation internally born neutral particles. We can rewrite 
this expression as 

To obtain the total source rate for first-generation neutrals, we write Eq. (10) for 
each energy group and sum over groups. 

Let us now consider the internally born neutral particles. Let S,(X) be the source 
function for the pth generation. At each possible birth point x, they are assumed to 
be born isotropically and with a single energy IS?(X) = $k,T&) = @zv2(x). Consider 
a slab of thickness dx’ at x’ (see Fig. 1); the flux of particles at X(X > x’) due to the 
source in the slab at x’ is 

dTDr(x) = &(x’) &(/3(x’, x)) dx’, (11) 

by application of Eq. (7). The r superscript denotes that these particles are traveling 
to the right at x and the 4 arises because only half of the particles born at x’ go to the 
right (i.e., v, > 0). Also, 

,&x’, x) = j lx; “‘I;;E,,x” dx” / 

and 

Ptxm, X’) = Q(X”) <~V>e + ni(X’)[(UV)i + <OV)cx]. 03) 

The arguments of the reaction rates in (13) are Te(xn) for (0~)~ and (Ti(x”), E(x’)) for 
(uv)i and (a~)~~ ; the absolute value sign has been introduced in (12) for convenience 
later. 

We now differentiate dr,‘(x) with respect to x to obtain the absorption rate at x 
due to the particles born in dx’ and multiply this by n,(x)<o~)~~~-~ to get the charge 
exchange rate at x. This gives us the contribution to the source rate at x of 
the (p + 1) th generation due to the pth generation at x’. We also have a similar 
expression for the particles traveling to the left at x; they were born at x’ > x. The 
total source rate S,,, is then found by integrating over x’. We get 

s,+,(x) = sb” dx’ K(x, x’> &Ax’), (14) 
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where the kernel K(x, x’) is given by 

(15) 

and p(x”, X) is given by (12) for both x’ < x and x’ > x. 
The interesting property of (14) and (15) is that the kernel is i~depende~~ of 

generation. It is convenient to write (14) symbolically as 

where K is the integral operator whose kernel is given by (15). The total charge 
exchange rate per unit volume S(x) is found by summing over generations; 

=(I+K+ P+ K3+ =-)&(x) 

using (16) recursively. We can rewrite this expression as 

SW = f%(x) + KS(x), 

which, when written out explicitly, is 

S(xl = w4 + lad dx’ K(x, x’> S(x’>. (I?) 

This is an integral equation determining the total charge exchange rate per unit 
volume S(X) in the plasma; the inhomogeneous term S,(X) is given by Eq. (10). 
Internal isotropic sources of neutral atoms with energy E are easily included; their 
source strength is merely added to S,(x). From the function S(x) one can determine 
all other quantities of interest. For example, the ionization rate 
impact is 

the energy loss rate due to charge exchange is 

W&X) = 1 dx’ &k,(Ti(x) - T’i(x’)] K( X, X’) S(X’) + [3kgTi(X) - I$] 31;(X), (19) 
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and the neutral particle flux incident on the wall is 

The integrand in (20) has an interesting significance. It is the source rate of particles 
that reach the wall without further collision. From this source rate and the temperature 
profile, one can construct the energy distribution of the neutral particles incident on 
the wall. This will be discussed further in the next section. The neutral particle density 
profile in the plasma is most easily found from the electron impact ionization rate. 
Since (a~)~ is essentially independent of the neutral particle energy but is a function 
of T,(X), we can write 

Hence the neutral particle density n,,(x) can be obtained from (18) and (21). 

3. THE DISCRETIZED SYSTEM 

We consider in this section the reduction of the integral equation (17) to a finite- 
dimensional matrix equation which is then solved by a single matrix inversion. The 
scheme used for reducing the integral equation to the matrix equation is based upon 
the application we have in mind: use as a neutral transport routine in the WHIST 
code [lo], which is a tokamak simulation code. This scheme has the property of 
explicitly conserving particles and energy, regardless of the mesh spacing. 

We consider a set of mesh points j with coordinates xi (j = 1, iV) and associated 
zones, as shown in Fig. 3. The boundaries between the zones are midway between 

/ 
/ / / 

-1-G ’ 2 I , 1 /. / / 
/ 

1 I / 

I' 

PLASMA CENTER 
PLdSMA 

WALL EDGE 
* 

(X=0) 

FIG. 3. Numbering scheme for meshpoints and zones in the discretized version. 



A TRANSPORT CODE FOR NEUTRAL ATOMS IN PLASMAS 275 

meshpoints (which may be nonuniformly spaced). The zone widths are Lz, = (x~,~ - 
x,.&2. This is the mesh-zone configuration used in the WHIST code for the plasma 
transport equations. The required plasma data are given at the meshpointsj. 

The reduction scheme consists of calculating, for a given generation, the flux (of 
the particles traveling to the right, for example) entering and leaving each zone. This 
difference represents the net absorption in that zone; a certain fraction of it is due to 
charge exchange and represents the source for the next generation. This source is 
assumed to be concentrated at the meshpoints. A higher-order a~~roxirnat~o~ would 
be to assume that the charge exchange source is uniform inside a given zone; the error 
is small if the zone widths are small compared with the neutral mean free path. This 
scheme was used earlier by Khelladi [I l] in another neutral transport routine based on 
following generations. 

We consider first the neutral particles streaming from the wall. The optical depth ro 
the left ‘face of the jth zone is 

The absorption rate per unit volume in thejth zone is 

Hence the source for the first generation of internally born neutral particles is 

This is the discretized version of Eq. (10). Here, (uv),, has as argument (ai( I&), 
We follow a similar procedure for the internally born neutral particles. In this case 

the optical depths are calculated between the kth meshpoint and the two faces of the 
jtb zone. Let us introduce the shorthand notation uj = u(xJ, pjn = p(xj , ~3~ Then 

j-1 

ifj > k, and 

if k > j. We also define 

Clearly ,& is the optical depth to the near face of the jtb zone and ,/!I& is the optical 
depth to the far face. 



276 AUDENAERDE, EMMERT, AND GORDINIER 

The absorption rate in thejth zone due to the source in the kth zone is 

for k fj. For k = j, the flux out the right face is 

and out the left face is 

(27) 

The absorption rate in thejth zone due to the particles born in the same zone is 

which becomes 

We multiply the absorption rate A?, by the probability that the absorption was due to 
charge exchange and sum over the source slabs k to get the source for the next genera- 
tion. We obtain the result 

where 

if j = k. The matrix Kjk is the discretized form of the integral operator K defined in 
Eq. (15). The optical depths needed in the calculation of Kjle are given in Eqs. (23)- 
(271. 

In the same way as in the continuous system, one sums over generations to get the 
total charge exchange rate per unit volume. This is determined by the matrix equation 

S=S,+ K.S, 
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which has the solution 

S = (I - K)-l . S1 . WI 

The neutral particle code SPUDNUT calculates the vector S, (determined by the wall- 
originated particles and internal sources, if any), the matrix K, and then calculates S 
by computing the inverse (I - K)-1. The inversion routine used is due to Grout 1121. 
The particle source and energy sink terms needed by the plasma transport equations 
are then calculated by matrix operations using S. For completeness, we list here the 
matrix equations for these source and sink terms. In Eqs. (29) and (31)-(34), the 
arguments of (ou)~~ and (uU)i are (Ti(xi), E(xlc>) and the argument of (ou}, is Y’e(~j)e 

nly the indicesj and k refer to mesh points; i denotes “ion,” as in p2i , or “ion impact 
ionization,” as in (GU)i . 

Electron impact ionization rate: 

Ion impact ionization rate: 

Energy loss rate from the ions due to charge exchange: 

Kinetic energy deposition in the ions due to ionization: 

Furthermore, one removes from the electrons an energy price for each electron impact 
ionization event and from the ions for each ion impact ionization event. 
SPUDNUT, this energy price is chosen to be 13.6 eV, corresponding to the ionization 
potential, but could be set higher to phenomenologically account for excitation as 
well as ionization. 

The flux of energetic neutrals incident on the wall is calculated using the discretized 
form of Eq. (20). 
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where 
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The energy distribution of the particles hitting the wall is obtained by noting that the 
particles belonging to each term in the summation in Eq. (35) have an energy Ek = j$ 
kBTi(XJ. 

Reflection of energetic particles at the wall can be easily incorporated in the routine 
by introducing an energy-dependent reflection coefficient 1131 and a prescription for 
dividing the reflected particles into the various energy groups composing the flux r, 
of particles entering the plasma. The outgoing fluxes are then calculated iteratively 
until the results converge. Since this is external to the basic neutral particle transport 
routine, it is not discussed further here. 

4. COMPARATIVE CALCULATIONS 

Multigroup ANISN calculations of the neutral particle transport were reported by 
Gilligan [7] for the TFTR plasma. For these calculations the plasma density and 
temperatures were taken to be 

G(r) = Q(r) = %4 - (r/a)“) + % , (36) 

G(r) = Ti(r) = To(l - (r/a)‘) + TB , (37) 

where IZ~ = 4 x 1013 cm-3, yzg = 1 x 101” cm-3, To = 9950 eV, TB = 50 eV. Here 
I is the radial coordinate and a is the wall radius. The coordinate x used in Sections 2 
and 3 is x = a - r. The density, ylc , of the neutral particles incident on the plasma at 
the edge was taken to be 5 x IO9 cm-3 and their energy, EC, was 3 eV. (The neutral 
particle flux into the plasma is given by r = .5n& where V = (2Ec/m1/2.) Thirty-one 
energy groups were used in the multigroup calculations to which results from 
SPUDNUT will be compared. 

Using the parameters above, the same calculation was done using SPUDNUT and 
FASLAB. The neutral density profile obtained by each of the routines is shown in 
Fig. 4. As can be seen, significant differences in the neutral density, as calculated by 
the three different codes, appear only after the neutral density has been attenuated by 
more than two orders of magnitude. This difference is not generally significant in 
tokamak simulation codes; the interesting region is the first two orders of magnitude. 
The energetic neutral particles reaching the wall are born primarily in this region. 
Furthermore, the neutral particle effects in the plasma transport equations are signi- 
ficant only in this zone (i.e., near the edge of the plasma). The energy spectrum of the 
energetic neutral particle flux incident on the wall is shown inFig. 5for theANISNand 
SPUDNUT calculations; again the agreement is good. One conclusion from this 
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TFTR NEUTRAL CALCULATION TFTR NEUTRAL CALCULATION 

Tk)=T,[I-WA)‘] +T, 

n(rh,[l-w*?] + 

SPUDNUT(U.W.1 

NORMALIZED RADIUS ( r /A I 

FIG. 4. Neutral density profile in the TFTR calculation 

PPPL MULTIGROUP 

I03 104 

PARTICLE ENERGY teV) 

FIG. 5. Energy spectrum of the neutral particle flux incident on the wall-TFTR. case. 
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comparison is that our assumption of the charge-exchange neutrals being born 
(locally) monoenergetically is reasonable. 

It should be noted that the ANISN calculation was done in cylindrical georne~r~~ 
whereas SPUDNUT uses a slab with a source on one side, and FASLAB uses a 
symmetric slab (source on both sides and symmetry about the midplane). The ANIS 
calculation took 75 set on an Il3M 360/91 [7], compared to 1.35 set for FASL 
.O6 set for SPUDNUT, both on the CDC-7600. Twenty zones were used 
§PU~~T calculation; the computational time scales as the square 
number of zones. The most time-consuming step is the calculation of the r 
rates needed in the matrix &,. Simpler routines for the reaction rates wo 
stantially reduce the computation time. 

A comparative calculation with the Monte Carlo neutral code of I-Iughes and 
j14] has also been made. The parameters were the same as the TFTR compa 
((Eqs. (36), (37)) but with a somewhat lower central plasma density (mi(O) = 4 x 
1013 cm-8). The results from the Monte Carlo code and from SPUDNUT are in 
agreement for r/a 3 -6; at r/a = .6 the neutral density is reduced from the 
density by two orders of magnitude. The flux of neutrals leaving the plasma agrees 
within 10 % for the two codes. Again, the Monte Carlo code is cylindrical, while 
SPUDNUT uses slab geometry. 
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FIG. 8. Ion energy loss rate per unit volume-NUWMAK case. 
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A comparison has also been made for a reactor size plasma, ~UWMA~ [15], 
using FASLAB and SPUDNUT. In this case the assumed plasma density and te 
perature profiles are 

Tdr) = Ti(r) = Ti(O) [I - (5) 

where no = 1.95 x lOl4 cm-3, nB = 3.2 x lo1 cm-3, T0 = 10 keV, TB = 30 eV. 
effective cold neutral density at the edge is 1.9 x lOlo cm-3 and its energy is 5 eV. 
neutral particle density is shown in Fig. 6, the ionization rate in Fig. 7, and 
energy loss rate from the ions in Fig. 8. The agreement between the two codes is go 

Shown in Fig. 9 is the source rate for neutral particles that reach the wall witbo~~ 
further collisions, and in Fig. 10 is their energy spectrum (normalized to unity). The 
total neutral particle flux incident on the wall is r,, = 8.5 x lO1l 
calculated by SPUDNUT, and l-‘, = 7.5 x lO1l cm-2 set-I, as 
FASLAB. 

5. CONCLUSIONS 

The neutral particle transport routine SPUDNUT provides reasonable accuracy 
with. a considerable saving in CPU time and program space. It can be a useful tool in 
situations where the slab model approximation is justified. 
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